Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.

نویسندگان

  • Babette A Brumback
  • Miguel A Hernán
  • Sebastien J P A Haneuse
  • James M Robins
چکیده

Robins introduced marginal structural models (MSMs) and inverse probability of treatment weighted (IPTW) estimators for the causal effect of a time-varying treatment on the mean of repeated measures. We investigate the sensitivity of IPTW estimators to unmeasured confounding. We examine a new framework for sensitivity analyses based on a nonidentifiable model that quantifies unmeasured confounding in terms of a sensitivity parameter and a user-specified function. We present augmented IPTW estimators of MSM parameters and prove their consistency for the causal effect of an MSM, assuming a correct confounding bias function for unmeasured confounding. We apply the methods to assess sensitivity of the analysis of Hernán et al., who used an MSM to estimate the causal effect of zidovudine therapy on repeated CD4 counts among HIV-infected men in the Multicenter AIDS Cohort Study. Under the assumption of no unmeasured confounders, a 95 per cent confidence interval for the treatment effect includes zero. We show that under the assumption of a moderate amount of unmeasured confounding, a 95 per cent confidence interval for the treatment effect no longer includes zero. Thus, the analysis of Hernán et al. is somewhat sensitive to unmeasured confounding. We hope that our research will encourage and facilitate analyses of sensitivity to unmeasured confounding in other applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures.

Even in the absence of unmeasured confounding factors or model misspecification, standard methods for estimating the causal effect of a time-varying treatment on the mean of a repeated measures outcome (for example, GEE regression) may be biased when there are time-dependent variables that are simultaneously confounders of the effect of interest and are predicted by previous treatment. In contr...

متن کامل

On Parametrization, Robustness and Sensitivity Analysis in a Marginal Structural Cox Proportional Hazards Model for Point Exposure

In this paper, some new statistical methods are proposed, for making inferences about the parameter indexing a Cox proportional hazards marginal structural model for point exposure. Under the key assumption that unmeasured confounding is absent, we propose a new class of closed-form estimators that are doubly robust in the sense that they remain consistent and asymptotically normal for the e¤ec...

متن کامل

Clustering and Residual Confounding in the Application of Marginal Structural Models: Dialysis Modality, Vascular Access, and Mortality.

In the application of marginal structural models to compare time-varying treatments, it is rare that the hierarchical structure of a data set is accounted for or that the impact of unmeasured confounding on estimates is assessed. These issues often arise when analyzing data sets drawn from clinical registries, where patients may be clustered within health-care providers, and the amount of data ...

متن کامل

Marginal and Nested Structural Models Using Instrumental Variables

The objective of many scientific studies is to evaluate the effect of a treatment on an outcome of interest ceteris paribus. Instrumental variables (IVs) serve as an experimental handle, independent of potential outcomes and potential treatment status and affecting potential outcomes only through potential treatment status. We propose marginal and nested structural models using IVs, in the spir...

متن کامل

Assessing mediation using marginal structural models in the presence of confounding and moderation.

This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW can be used to take confounding into account, but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics in medicine

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2004